
lable at ScienceDirect

Environmental Modelling & Software 76 (2016) 1e12
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
A GUI platform for uncertainty quantification of complex dynamical
models

Chen Wang a, Qingyun Duan a, *, Charles H. Tong b, Zhenhua Di a, Wei Gong a

a College of Global Change and Earth System Science and Joint Center for Global Change Research, Beijing Normal University, Beijing, 100875, China
b Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
a r t i c l e i n f o

Article history:
Received 25 March 2015
Received in revised form
11 November 2015
Accepted 13 November 2015
Available online xxx

Keywords:
Uncertainty Quantification
Design of experiments
Sensitivity analysis
Surrogate modeling
Parameter optimization
UQ-PyL
* Corresponding author.
E-mail address: qyduan@bnu.edu.cn (Q. Duan).

http://dx.doi.org/10.1016/j.envsoft.2015.11.004
1364-8152/© 2015 The Authors. Published by Elsevier
a b s t r a c t

Uncertainty quantification (UQ) refers to quantitative characterization and reduction of uncertainties
present in computer model simulations. It is widely used in engineering and geophysics fields to assess
and predict the likelihood of various outcomes. This paper describes a UQ platform called UQ-PyL
(Uncertainty Quantification Python Laboratory), a flexible software platform designed to quantify un-
certainty of complex dynamical models. UQ-PyL integrates different kinds of UQ methods, including
experimental design, statistical analysis, sensitivity analysis, surrogate modeling and parameter opti-
mization. It is written in Python language and runs on all common operating systems. UQ-PyL has a
graphical user interface that allows users to enter commands via pull-down menus. It is equipped with a
model driver generator that allows any computer model to be linked with the software. We illustrate the
different functions of UQ-PyL by applying it to the uncertainty analysis of the Sacramento Soil Moisture
Accounting Model. We will also demonstrate that UQ-PyL can be applied to a wide range of applications.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Software availability

Name of software: Uncertainty Quantification Python Labora-
tory (UQ-PyL)

Programming language: Python
Operating system: Windows, Linux and MacOS
Availability: http://www.uq-pyl.com
Documentation: http://www.uq-pyl.com
User interface: Graphical user interface or command-line
License: Free under a GNU General Public License (www.gnu.

org) agreement.
1. Introduction

Computer models have become an indispensable tool in engi-
neering and geophysics for simulating the behaviors of complex
dynamical systems. People can do things with computer models
which may otherwise be impossible in real life, e.g., the simulation
of nuclear explosions and the prediction of future climatic and
hydrologic events (Ji et al., 2014). However, computer simulations
Ltd. This is an open access article u
inherently involve uncertainties (Box and Draper, 1987). Quanti-
fying those uncertainties is critical to assess the ability of computer
models to emulate actual system behavior. Uncertainty quantifi-
cation (UQ) refers to quantitative characterization and reduction of
uncertainties present in computer model simulations. It tries to
determine how likely certain outcomes are given that some aspects
of the system are not exactly known. Tong (2005) has defined the
objectives of UQ as: 1) to characterize the output uncertainties of a
simulation model, 2) to identify the major sources of uncertainties
of a model, and to provide information on which additional ex-
periments are needed to improve the understanding of a model,
and 3) to tune a simulation model to match model outputs to
experiments.

The errors leading to discrepancies between model simulations
and observed experimental data can be grouped into three cate-
gories (Duan et al., 2006): 1) model error, 2) data error, and 3)
parameter error. All computer models are only an abstraction of the
real world. They are usually designed to express only essential
principles of the systems (e.g. conservation laws, thermodynamics
laws, etc.) (Maitre and Knio, 2010). Often, simplifications are made
to allow for mathematical tractability and/or to compensate for our
lack of knowledge of certain processes. Therefore, all models
contain model errors. A multi-model ensemble strategy is some-
times used as a practical way to account for uncertainties due to
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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model errors (Du, 2007). All computer models need input data to
conduct a simulation. The data may concern the system's geometry,
boundary and initial conditions and external forcing. Using data
which is only an imperfect approximation of an environmental
variable introduces additional errors known as data errors. In
practice, different data assimilation algorithms have been advanced
to address data errors (Houtekamer and Mitchell, 1998). All com-
puter models come with parameters that reflect physical charac-
teristics of the simulated system. These parameters may be physical
constants or coefficients and exponents in equations prescribing
the constitutive laws of the system. Incorrect specification of the
parameter values (i.e., parameter errors) can have great influence
on the performance of the simulation model (Duan et al., 2006). In
this study, we focus on quantifying and reducing uncertainties due
to parameter errors.

In traditional hydrological modeling, model parameters are
often estimated through model calibration, a process of matching
model simulation to experimental data by tuning model parame-
ters with some optimization algorithms (Duan et al., 1992). How-
ever, an optimization search may need up to tens of thousands of
model runs to find the global optimal solution (Wang et al., 2014).
This can be problematic if a computer model is sufficiently complex
with a high dimensionality and a high computational demand. For
this kind of models, a UQ framework can be used. UQ framework
includes some key steps to simplify the problem and reduce
computational demand. If a model has a large number of parame-
ters, but only a relatively small number of them are important, a
screening procedure can be used to identify the most important
ones. Sensitivity analysis (SA) is a tool designed to accomplish this
task (Shin et al., 2013; Li et al., 2013; Gan et al., 2014; Shin et al.,
2015). If the simulation model requires a high computational
resource to run, surrogatemodeling should be used by constructing
a simple statistical model of the response surface of the simulation
model (Wang et al., 2014). Once the surrogatemodel is constructed,
a global optimization algorithm can be used to identify the optimal
parameter set.

A UQ software platform is designed to accomplish the tasks
required for a UQ framework. A good UQ software platform should
have the following features: 1) it should have many different UQ
algorithms for users to choose from and should have a good ar-
chitecture for extending new algorithms; 2) it should have a feature
that allows easy coupling with any user-defined external models;
3) the platform can run across different platforms, including Win-
dows, Linux and MacOS and 4) it should have a Graphical User
Interface (GUI) which is convenient to use for the users.

There exist a plethora of different UQ software platforms, each
of them having unique strengths and weaknesses and being suit-
able for different kind of problems. PEST (Parameter ESTimation),
which runs under the Windows platform, is a model-independent
parameter estimation software for complex environmental and
other computer models (Doherty, 2004). PSUADE (Problem Solving
environment for Uncertainty Analysis and Design Exploration) is a
Cþþ based open-source software package, which provides an in-
tegrated design and analysis environment for performing UQ ana-
lyses of large complex systemmodels (Tong, 2005). It runs on Linux
based systems and only through command line languages. DAKOTA
(Design Analysis Kit for Optimization and Terascale Application)
toolkit, developed by researchers from Sandia National Labora-
tories, is written in Cþþ and runs on supercomputer platforms
(Adams et al., 2009). It provides a flexible and extensible interface
between simulation codes and the iterative analysis methods.
SIMLAB1 (Saltelli et al., 2004) is a Windows based software
1 http://ipsc.jrc.ec.europa.eu/index.php?id¼756#c2907.
platformwhich mainly focuses on sensitivity analysis. It provides a
reference implementation of many global sensitivity analysis
techniques. GUI-HDMR (Ziehn and Tomlin, 2009) is also a sensi-
tivity analysis software. It has a GUI and can only runwith MATLAB
platform. UCODE performs inverse modeling, posed as a parameter
estimation problem, using nonlinear regression approach (Poeter
et al., 2005). It is written in FORTRAN language and can only run
on a Windows platform. Open TURNS (Open source initiative to
Treat Uncertainties, Risks’N Statistics) which is a powerful platform
to perform uncertainty and sensitivity analysis (Andrianov et al.,
2007). It can run on Windows and Linux based operating systems
and need Python language to call its functions. UQLab (Uncertainty
Quantification in MATLAB) is a MATLAB based software framework
for uncertainty quantification which is designed to be extended to
the engineering research community (Marelli and Sudret, 2014). It
has incorporated mainly the non-intrusive stochastic methods,
such as Polynomial Chaos Expansion (PCE). Of those UQ platforms,
some focus on specific aspects of the UQ process, e.g., PEST
designed mainly to solve optimization problems and SIMLAB to
perform only uncertainty and sensitivity analyses. Some of the
software run only on a particular operating system, e.g., PEST,
UCODE and SIMLAB running only on Windows platform, PSUADE
only on Linux platform. Some need third party commercial soft-
ware, e.g., UQLab needing to run under MATLAB software. Few of
them contain comprehensive toolsets for carrying out the entire UQ
process, run on cross-platforms, and have a GUI to use.

In this study, we developed a new, general-purpose, cross-
platform UQ framework called Uncertainty Quantification Python
Laboratory (UQ-PyL), which aims to combine the strengths of
several existing UQ platforms, while also serving as a tutorial
toolkit for UQ users. It is a Python based software platform designed
to help computer modelers to quantify and reduce model un-
certainties associated with model parameters. It is made of several
components that perform various functions, including design of
experiments, statistical analysis, sensitivity analysis, surrogate
modeling and parameter optimization. It is suitable for parametric
uncertainty analysis of any computer simulation models, as long as
three sets of model related information are available: 1) the model
executable code with all required input forcing data files, 2) the
control file which contains all information needed to execute the
model (e.g., all adjustable parameters and file access information
for all inputs and outputs), and 3) model simulation outputs of
interest, the corresponding observations and the error function.
UQ-PyL is intended as a didactic as well as a practical toolbox, and
therefore, it contains many different methods under each function.
It runs on common computer system platforms including Win-
dows, Linux and MacOS and has a GUI that helps execute each of
the functions.

The purpose of this paper is to introduce UQ-PyL to users, and
provide useful guidance on using appropriate UQ functions for their
applications. The paper is organized as follows: Section 2 offers a
brief description of UQ framework. Section 3 describes the UQ-PyL
platform. Section 4 illustrates the different functions of UQ-PyL
through the calibration of a simple conceptual hydrologic model
e Sacramento Soil Moisture Accounting (SAC-SMA) model
(Burnash, 1995). Finally, concluding remarks and future work are
presented in Section 5.

2. Framework of Uncertainty Quantification

To rigorously perform UQ, a comprehensive methodology is
needed. Fig 1 shows the flowchart of the UQ procedure. The main
steps involved in UQ include defining the problem, characterizing
the uncertainties, screening the most sensitive parameters, con-
structing a suitable surrogate model and performing analyses such
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Fig. 1. Flowchart of Uncertainty Quantification.
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as quantitative global sensitivity analysis, global optimization or
reliability analysis. Below, we elaborate on each of those steps.

First, the user should define the problem that needs to be solved.
In this step, the suitable computer model of a physical system
should be selected, along with the input and output variables
clearly specified. The types of input data generally depend on the
physical problem being simulated, and on the model used to
represent it.

The initial characterization of parameter uncertainties should be
based on prior knowledge of the model. By characterizing a source
of uncertainty we mean that a) assigning a mathematical structure
to describe the uncertainty and b) determining the numerical
values of all of the relevant parameters of the structure. In this
study, the input variables are specified including parameter name,
lower and upper bound and functional form of the probability
distribution.

If the model has a high parameter dimensionality, a screening
step should be performed to screen out the less sensitive param-
eters from the more sensitive ones in order to reduce the dimen-
sionality. Screening analysis step includes several components:
design of experiment, uncertainty propagation and statistical/
sensitivity analysis. Design of experiment (DoE) is a body of tech-
niques that enable an investigator to conduct better experiments,
analyze data efficiently and make the connections between the
conclusions from the analysis and the original objectives of the
investigation (Wu and Hamada, 2009). DoE can be divided into
deterministic design, random design and quasi-random design.
Deterministic design means that if the number of factors and the
levels in each factor are known, the number of samples and the
position of each sample are determined, e.g., Full-Factorial design
(Box et al., 2005). Random design refers to the design which gen-
erates a specified number of samples randomly according to a pre-
determined probability distribution, e.g., Monte Carlo design.
Quasi-random design, also referred as “low discrepancy design”,
denotes the notion that the parameter samples are not really
random, but are generated according to some schemes that place
them in sample space that appear more uniformly distributed than
a random design. In other words, the sample points in quasi-
random design appear random, but the exact location of every
sample point is set deterministically. A typical example is Sobol'
sequence which is generated using a base of two to form succes-
sively finer uniform partitions of the unit interval, and then reorder
the coordinates in each dimension (Sobol', 1967). After performing
DoE, uncertainty propagation should be followed by running the
simulation model using the parameter sample sets that were
generated.

A statistical analysis of the model outputs can be performed
after model simulations are completed for all of the DoE generated
parameter sample sets. Statistical analysis include calculation of
various statistical moments (e.g., means, standard deviations,
skewness and kurtosis), confidence intervals of the estimated
means, correlational analysis between model parameters and
model performance measures, and hypotheses tests on output
statistics and distributions.

Sensitivity analysis (SA) refers to the process of how uncertainty
in the output of a model can be apportioned to different input
factors, i.e., model parameters (Saltelli et al., 2008). SA can be
divided into two groups: local SA and global SA. The local SA
measures the changes of model response by varying only one
parameter at a time while keeping other parameters constant,
while global SA examines the changes of model response by vary-
ing all parameters sequentially or simultaneously (Gan et al., 2014).
For global SA, it can be categorized into derivative-based approach,
variance-based approach and regression-based approach. The
principle of derivative-based approach is that the derivative vY/vXi

of an output Y versus an input parameter Xi can be thought of as a
mathematical definition of the sensitivity of Y versus Xi (Saltelli
et al., 2008). The larger the value of vY/vXi, the more sensitive is
the input parameter Xi is. For variance-based method, the sensi-
tivity of an input parameter is determined based on its contribution
to the model output total variance. The method is founded on the
idea that if D is the total variance of the model output, this can be
decomposed in terms of increasing dimensionality as
D ¼ Pn

i¼1Di þ
P P

1�i�j�n
Dij þ/þ D12/n, where Dð…Þ denotes the

variance contributed by the terms in (…), with a bigger value
implying higher sensitivity. Note that in theory variance decom-
position method can not only offer the first order sensitivity in-
formation, but also higher order information and the total variance
information. Regression-based SA methods may also be called
response surface SA methods, a class of methods which determine
the sensitivity of an input factor by its ability to influence the
quality of regression or response surface. Multivariate adaptive
regression splines (MARS) method is a typical example of this type
of methods, which determines the sensitivity based on difference
between the response surface established using all input factors
and the one which is built without a specified input factor. The
larger the difference between the response surface, the more sen-
sitive is the input factor (Li et al., 2013; Gan et al., 2014).

If a simulation model requires a significant computational
resource to run, surrogate modeling should be used to construct a
simple statistical emulator of the response surface of the dynamical
model. Surrogate modeling is a collection of mathematical and
statistical techniques for empirical model building. Surrogate
modeling methods describe the relationship between inputs (i.e.,
model's adjustable parameters) and outputs (i.e., the performance
measure of the dynamical simulation model) (Wang et al., 2014).
Once a surrogate model has been constructed, subsequent analysis
can rely on this surrogate model, which is inexpensive to run
compared to the dynamical simulation model. This should facilitate
quantitative analysis that requires a large number of model runs.
Some fields also refer surrogate modeling methods as function
approximation, meta-modeling, response surface method or sta-
tistical emulation.

Once the surrogate model is established, comprehensive ana-
lyses requiring up to tens of thousands model runs, such as quan-
titative sensitivity analysis, global optimization, and reliability
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analysis, can be performed on the surrogate model. In this study,
we focus on parameter optimization, also called model calibration
which is essentially a global optimization problem (i.e., given a set
of tunable parameters and their ranges, it searches for optimal
parameter set that yields model simulation that best matches with
the experimental data). Two kinds of optimization approaches can
be employed for model calibration, namely, deterministic optimi-
zation which tries to identify a unique set of optimal parameters
and Bayesian optimization which aims to find the posterior distri-
bution of the parameter sets that maximize of the likelihood
function given the observations.
3. An overview of the UQ Python Laboratory (UQ-PyL)
platform

3.1. A description of the UQ-PyL

The UQ-PyL software platform is developed to provide an inte-
grated design and analysis environment for performing various UQ
tasks for large complex simulation models. It has assembled many
of the most commonly used UQ algorithms and makes them easily
available in a single platform. The software is written in Python
language, one of the most popular languages for academic research
and industrial applications. UQ-PyL makes use of numerous
external Python packages to perform various functions. For
example, Numpy2 package is used to define the basic data structure.
Scipy3 package is incorporated for its efficient algorithms for linear
algebra, sparse matrix representation and basic statistical func-
tions. Matplotlib4 package is utilized for its various drawing func-
tions, and Scikit-learn (Pedregosa et al., 2011) package is integrated
into UQ-PyL for the different surrogate modeling algorithms. UQ-
PyL also integrates some existing packages to perform certain un-
certainty quantification functions, e.g., pyDoE5 package for carrying
out DoE functions, SALib6 package for implementing various
sensitivity analysis algorithms.

Even though UQ-PyL is equipped with a GUI to facilitate
execution of various functions, it can also run as a script program in
a batch mode. Designed to run over different platforms, UQ-PyL can
generate both Python script and shell script which can run on a
Windows (with *.bat format), a Linux, or a MacOS platform (with
*.sh format). One may create a script file on a Windows platform
and then port it into other platforms.

Fig. 2 shows the front page of UQ-PyL. Different tab widgets
allow the user to execute different steps of the UQ process,
including problem definition, DoE, statistical analysis, SA, surrogate
modeling and parameter optimization. One may click on the
desired tab by using a mouse and/or by entering the required in-
formation via keyboard to perform various tasks. After a task is
completed, the software generates tabular and graphical outputs.
The graphical outputs can be saved in a variety of formats, inclu-
ding.png,.bmp,.tiff or.pdf among others. UQ-PyL also has an inter-
active interface realized through Spyder package.7 This feature
allows users to perform various functions in UQ-PyL through
interactive execution of Python scripts (see Fig. 3). The left of the
interactive window is a Python script editor, in which one may edit
the Python codes that contain various UQ-PyL intrinsic functions. In
this window, one may click the “run” button to execute the script.
2 http://www.numpy.org/.
3 http://www.scipy.org/.
4 http://matplotlib.org/index.html.
5 http://pythonhosted.org/pyDOE/.
6 http://jdherman.github.io/SALib/.
7 http://pythonhosted.org/spyder/.
The values of the internal variables are shown in the upper right
and the UQ output results are shown in the lower right of the
window.
3.2. The UQ-PyL flowchart

Fig. 4 is the flowchart illustrating how UQ-PyL executes an UQ
task. A task can be carried out in three major steps: (1) model
configuration preparation; (2) uncertainty propagation; and (3) UQ
analysis. In the first step, the GUI is used to specify the model
configuration information (i.e., parameter names, ranges and dis-
tributions), and the DoE information (i.e., the sampling techniques
and sample sizes) to prepare for UQ exercise for a given problem. At
the end of this step, a file called “sample set” is generated which
contains all information on model configuration and the DoE
sampling results. In the second step, the different sample param-
eter sets generated in the last step are fed into the simulationmodel
to enable the execution of simulation model (i.e., uncertainty
propagation). To do this, UQ-PyL generates a “model driver” (i.e., a
Python script) which links model executable code with the “sample
set” file. The “model driver” is then executed by running the
simulation model according to the specified model configuration
using different parameter sets as in the “sample set” file. At the end
of this step, the “model response outputs” file is obtained, which
contains all simulation response outputs to different parameter
sets. In the third step, a variety of UQ exercises are carried out,
including statistical analysis, SA, surrogate modelling and param-
eter optimization. UQ-PyL contains a rich set of tools for carrying
out those exercises (see Tables 1e5). At the end of this step, tabular
results and graphical outputs are obtained. For more detailed in-
structions on how to use UQ-PyL, readers are referred to the UQ-PyL
online user manual (http://uq-pyl.com/file/UQ-PyL User Manual v1.
1.pdf).
4. An illustration of UQ-PyL with a hydrological modeling
example

4.1. The test model and data

This section intends to illustrate different UQ functions available
in UQ-PyL. The SAC-SMA rainfall-runoff model is used as a test
problem which has a highly non-linear, non-monotonic input
parameter-model output relationship. This model is the most
widely used hydrological model by the River Forecast Centers
(RFCs) of the U.S. NationalWeather Service for catchment modeling
and flood forecasting (Burnash et al., 1973). There are sixteen pa-
rameters in the SAC-SMA model. Thirteen of them are considered
tunable, and the other three parameters are fixed at pre-specified
values according to Brazil (1988). Table 6 describes those parame-
ters and their ranges.

The South Branch Potomac River basin near Springfield, West
Virginia in the U.S. was chosen as the study area. The total drainage
area upstream of the gauging station (U.S. Geological Survey Station
No. 01608500) is about 3800 km2. Historical precipitation, potential
evapotranspiration and streamflow observations from January 1,
1960 to December 31, 1979 were obtained from the Model
Parameter Estimation Experiment (MOPEX) database for this study
(Duan et al., 2006). The average annual precipitation over this
period is 1021 mm, average annual potential evapotranspiration is
762 mm, and average annual runoff is 39.5 m3/s. The hydrological
simulations were run at a 6-h time step over the entire data period.
To evaluate model response to different parameters, we use root
mean square error (RMSE) between the simulated and observed
daily streamflow discharge (m3/s) as the objective function:
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Fig. 2. Graphical user interface of UQ-PyL.

Fig. 3. Interactive page of UQ-PyL.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t¼1

�
Qfcs

t � Qobs
t

�2
vuut (1)

where Qfcs
t and Qobs

t are simulated and observed streamflow
discharge values at time t, N is the total number of observations. To
reduce the influence of incorrect specification of initial conditions,
Table 1
DoE methods available in UQ-PyL.

Design type Design method

Deterministic Full-Factorial design
Fractional-Factorial design
Plackett-Burman design
Box-Behnken design
Central-Composite design

Random Monte Carlo design
Latin Hypercube design
Symmetric Latin Hypercube de

Quasi-random QMC Sobol' sequence
QMC Halton sequence
the simulations from the first three months are excluded in the
calculation. The UQ-PyL GUI was used to generate a Python driver
file to couple the SAC-SMA model with the software platform.
4.2. A demonstration of the DoE methods

DoE is the first step of UQ analysis. There are many DoE algo-
rithms available in UQ-PyL, three of them are demonstrated here:
Source

Box et al., 2005
Box et al., 2005
Plackett and Burman, 1946
Box and Behnken, 1960
Myers, 1971
Meteopolis and Ulam, 1949
Mckay et al., 1979, Iman et al., 1981

sign Ye et al., 2000
Sobol’, 1967
Krykova, 2003



Table 2
Statistical Analysis methods available in UQ-PyL.

UA method Source

Moment method Casella and Berger, 2002
Confidence interval methods Cox and Hinkley, 1974
Hypothesis test Schervish, 1996
Analysis of variance (ANOVA) Schervish, 1996

Table 4
Surrogate modeling methods available in UQ-PyL.

Surrogate modeling method Source

Polynomial Fen et al., 2009
Generalized Linear Model Hastie and Tibshirani, 1990
Regression Tree Breiman et al., 1984
Random Forest Breiman, 2001
MARS Friedman, 1991
Nearest Neighbors Bentley, 1975
Support Vector Machine Zhang et al., 2009
Gaussian Process Rasmussen and Williams, 2006
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Latin Hypercube (LH), Monte Carlo (MC) and Quasi Monte Carlo
(QMC). LH is a statistical method for generating a distribution of
plausible collections of parameter values from a multi-dimensional
distribution. It is a sampling design suited for an arbitrary number
of dimensions, where each sample is the only one in each axis-
aligned hyper-plane containing it. MC is the most commonly used
algorithm that relies on repeated random sampling to obtain nu-
merical approximations of a specified distribution function of an
unknown probabilistic entity. A QMC can be viewed as a deter-
ministic version of MC (Niederreiter, 1992). It also called a low-
discrepancy sequence which is a set of points filling the sample
area “efficiently” and has a lower discrepancy than straight pseudo-
random number set (Krykova, 2003).

For the 13-dimensional SAC-SMA problem, we use 500 sample
points to evaluate the four methods. We repeat LH and MC ten
times. Since QMC is a deterministic sequence, it is run just one time.
Four metrics MD2, CD2, SD2 and WD2 (Gong et al., 2015) were
computed to evaluate the space-filling properties of thesemethods.
For those metrics, the lower the numerical value, the better space-
filling property the DoE algorithm has. Fig. 5 shows the space-filling
comparison results of the four DoE algorithms. From the results we
can see that QMC has the best score among four DoEs. For the
remainder of this study, we choose QMC method for subsequent
analyses.

4.3. The demonstration of statistical analysis and SA methods

In this section, we perform statistical analyses of the model
outputs using the parameter samples generated by the QMC
method from the previous section. The uncertainty of the model
outputs can be characterized by using a few basic statistical
quantities, including moments and confidence interval. Moments
refer to statistical measures of a random variable Y, in this case the
model output. The collection of all the moments uniquely de-
termines the variable's probability distribution. In UQ-PyL, we
automatically compute the first moment (mean), the second
moment (variance), the third moment (skewness) and the fourth
moment (kurtosis). The results are presented in Table 7. The con-
fidence interval of the estimated mean is shown in Table 8, which
measures uncertainty of the mean estimate due to sampling errors
(Easton and McColl, 1997).

We also experimentedwith two of the SAmethods from the UQ-
Table 3
SA methods available in UQ-PyL.

SA type SA method

Derivative-based MOAT

Derivative-based Global Sensitivity Measu
Variance-based Sobol'

Fourier Amplitude Sensitivity Test (FAST)
Metamodel-based Sobol'

Regression-based Correlation analysis
Gaussian process screening
MARS screening
Delta Moment-Independent Measure
PyL: the Morris One-at-A-Time (MOAT) and the Metamodel-based
Sobol' variance decompositionmethod. TheMOATmethod is one of
the most popular methods for parameter screening for its
simplicity and efficiency (Morris, 1991). The theoretical basis of this
method is that the overall effect of each parameter can be
approximated by the mean m and standard deviation d of the gra-
dients of each parameter sampled from the Morris sample paths.
The gradients are the difference of objective function values divided
by the difference of sampled parameter values. The MOAT method
is a qualitative sensitive analysis method which gives only relative
sensitivity results of different parameters. Sobol' variance decom-
position method is a quantitative SA algorithm as it computes the
precise contribution ratio of each parameter to the total variance of
model output. However, the Sobol' method needs tens of thousands
of model runs to obtain accurate approximation of the variances.
This can be very difficult if the simulation model is expensive to
run. UQ-PyL implemented a method called Metamodel-based
Sobol' method, which calculates Sobol' variance decomposition
efficiently based on the response surface of a metamodel. This
method computes several SA indices including the first order
sensitivity, total order sensitivity and second order interaction
sensitivity.

Figs. 6 and 7 show the SA results using the MOAT and
Metamodel-based Sobol' methods. For the MOAT method, the
larger the modified means, the more sensitive the parameters are.
The rule of thumb for delineating sensitive parameters from
insensitive ones can be the sensitivity ratio of the most sensitive
parameter vs the least sensitive one being less than a certain
threshold (say 15e20). Based on the MOAT results, we observe that
parameters LZPK, PCTIM, ADIMP, LZSK, PFREE and UZK are the
sensitive parameters (see Fig. 6). The Metamodel-based Sobol'
method not only identifies the most sensitive parameters, but also
quantifies the contribution ratio of each parameter. For the
Metamodel-based Sobol' method, we conclude that parameters
LZPK, PCTIM, ADIMP, UZK, LZSK and PFREE are the sensitive pa-
rameters (see Fig. 7). By comparing Figs. 6 and 7, we note that the
SA results of the MOAT and Metamodel based Sobol' methods are
consistent, both identifying LZPK, PCTIM, ADIMP, UZK, LZSK and
PFREE as the most sensitive parameters, with the latter showing
Source

Morris 1991
Campolongo et al., 2007

re (DGSM) Sobol' and Kucherenko, 2009
Sobol' 2001, Saltelli 2002, Saltelli et al., 2010
Cukier et al., 1973, Saltelli et al., 1999
Gan et al., 2014
Spearman, 1904
Gibbs and Mackay, 1997
Friedman, 1991
Borgonovo 2007, Plischke et al., 2013



Table 5
Parameter optimization methods available in UQ-PyL.

Algorithm type Optimization method Source

Deterministic Shuffled Complex Evolution Duan et al., 1992
Simulated Annealing Kirkpatrick et al., 1983
Dynamically Dimensional Search Tolson and Shoemaker, 2007
Adaptive Surrogate Modeling based Optimization Wang et al., 2014

Bayesian Monte Carlo Markov Chain Geyer, 1992; Neal, 1993

Table 6
Parameters of SAC-SMA model.

No. Parameter Description Range

1 UZTWM Upper zone tension water maximum storage (mm) [10, 300]
2 UZFWM Upper zone free water maximum storage (mm) [5, 150]
3 UZK Upper zone free water lateral drainage rate (day�1) [0.1, 0.75]
4 PCTIM Impervious fraction of the watershed area (decimal fraction) [0, 0.1]
5 ADIMP Additional impervious area (decimal fraction) [0, 0.2]
6 ZPERC Maximum percolation rate (dimensionless) [5, 350]
7 REXP Exponent of the percolation equation (dimensionless) [1, 5]
8 LZTWM Lower zone tension water maximum storage (mm) [10, 500]
9 LZFSM Lower zone supplemental free water maximum storage (mm) [5, 400]
10 LZFPM Lower zone primary free water maximum storage (mm) [10, 1000]
11 LZSK Lower zone supplemental free water lateral drainage rate (day�1) [0.01, 0.35]
12 LZPK Lower zone primary free water lateral drainage rate (day�1) [0.001, 0.05]
13 PFREE Fraction of water percolating from upper zone directly to lower zone free water (decimal fraction) [0.0, 0.9]
14 RIVA Riverside vegetation area (decimal fraction) 0.3
15 SIDE Ration of deep recharge to channel base flow (dimensionless) 0
16 RSERV Fraction of lower zone free water not transferrable to lower zone tension water (decimal fraction) 0
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the exact sensitivity indexes as well (see Fig. 7). The sensitivity
results from those figures are basically consistent, except UZK,
whose sensitivity ranks in the two figures changed places. This
difference is sensible as it is due to sampling uncertainty.
Fig. 5. Comparison of four metric values on three DoE methods, (a) is MD
4.4. The demonstration of surrogate modeling methods

The objective of this section is to demonstrate the different
surrogate modeling methods. Three algorithms available from the
2 metric, (b) is CD2 metric, (c) is SD2 metric and (d) is WD2 metric.



Table 7
Moments results of SAC-SMA model's objective function value.

Mean Variance Skewness Kurtosis

0.6697 0.0506 3.8326 38.2259

Table 8
Confidence interval of SAC-SMA model's mean of objective function value.

0.30% 5.00% 32.60% 50.00% 67.40% 95.00% 99.70%

0.640 0.650 0.660 0.670 0.680 0.689 0.700
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UQ-PyL are chosen for this purpose: Regression tree (Tree), Support
Vector Machine (SVM) and Gaussian Process (GP). Tree is a non-
parametric supervised learning method used to predict a
response from several inputs. It can be conveniently used for
Bayesian supervised learning, such as regression. SVM is a learning
machine implementing the structural risk minimization inductive
principle to obtain good generalization on a limited number of
Fig. 6. Sensitivity analysis result of MOA

Fig. 7. Sensitivity analysis results of Metamodel b
learning patterns (Basak et al., 2007). GP is an interpolating
regression method that uses a basis function with tuned parame-
ters to represent the original model (Jones, 2001). To check the
performance of the surrogate modeling methods, we used the K-
fold cross-validation (Picard and Cook, 1984) method which works
as follows. The entire sample set is divided into K subsets. Given a
specific surrogate construction method, a response surface is
created by using only K-1 subsets of sample points. The difference
between the true response surface and the response surface built
on the K-1 subsets of samples is computed. This procedure iterates
K times to obtain the average predictive error. If the error is within
specified tolerance, the surrogate model is regarded as acceptable.

Fig. 8 compares the predictive errors of different surrogate
modelmethods. From this figure, we note that GP performs the best
among these three methods. For subsequent analyses, we use the
surrogate model created by GP for further analyses.

4.5. The demonstration of parameter optimization methods

The last step in UQ process is to perform parameter
T overall effect on SAC-SMA model.

ased Sobol' total effect on SAC-SMA model.



Fig. 8. Box plot of predictive errors of different surrogate model methods.

Fig. 9. Parameter optimization results of SCE-UA on 6-parameter SAC-SMA.

Fig. 10. Parameter optimization results o
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optimization. After sensitivity analysis, we conclude that there are
six sensitive parameters (LZPK, PCTIM, ADIMP, UZK, LZSK and
PFREE) in SAC-SMA. In this section, we will only optimize these six
parameters. The other parameters are set to their respective default
values. There are several optimizationmethods available in UQ-PyL.
See Table 5 for the listing. We choose two typical parameter opti-
mization algorithmse Shuffled Complex Evolution (SCE-UA) (Duan
et al., 1992, 1994) and Monte Carlo Markov Chain (MCMC) as ex-
amples. SCE-UA is an evolution based directed global optimization
algorithm which is designed to find a unique set of global optimal
parameter set. Many studies have demonstrated that SCE-UA is an
effective and efficient method for parameter calibration (Gan and
Biftu, 1996; Hogue et al., 2000; Moreno et al., 2012). Fig. 9 shows
the parameter traces during optimization search using the SCE-UA
method. We note that, after about 800 sample points, the optimi-
zation search converges to its optimal solution, with an objective
function value of 0.945. Different from SCE-UA,MCMC assumes that
there is no unique set of optimal parameters. Instead, MCMC
searches for the posterior distribution of the model parameters
which maximize the likelihood of model simulation matching
corresponding observation. Fig. 10 shows the marginal posterior
distributions of the six optimized parameters. Five of the six pa-
rameters are clearly identifiable, with clear peaks in distribution,
except LZSK, which seems to non-identifiable.
5. Conclusion

In this paper, we introduced a newly developed UQ software
platform e UQ-PyL. It contains a wide variety of UQ algorithms,
including DoE, statistical analysis, SA, surrogate modeling and
global optimization. UQ-PyL uses a consistent, task-oriented
framework, thus enables easy experiments with different
methods for a given problem. It is designed in away that it is easy to
add new algorithms to its library. Further, UQ-PyL is implemented
in a high-level Python language. The GUI equipped in the software
allows an easy setup and execution of different UQ analyses. It runs
across different platforms including Windows, Linux and MacOS.

The UQ-PyL software provides a very handy tool for UQ analyses
of complex computer models. It is easy to be coupled with user
f MCMC on 6-parameter SAC-SMA.
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defined external dynamical simulation models. The user needs to
provide only three pieces of information, including model execut-
able file, model configuration file and model simulation outputs of
interest, along with the corresponding observations and the error
function to use UQ-PyL. We demonstrate various functions of UQ-
PyL through a simple hydrological model SAC-SMA and the re-
sults obtained by different UQ algorithms from UQ-PyL are
reasonable. The examples shown in the paper were designed to
facilitate users explore the capabilities of UQ-PyL fully.
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